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performs saccadic motion. Through the use of controlled saccadic 
motion, the rotational and translational values of motion can be 
determined after a few iterations of the algorithm. If the motion of 
the mobile entity changes smoothly along its trajectory, the algo- 
rithm will “track” the instantaneous direction of motion, and will 
provide continuous egomotion values for any type of path. It is 
important to note that our method simultaneously provides rotation 
and translation information, as opposed to methods that first deter- 
mine rotation and then derotate an image in order to find the FOE 
and thus the direction of translation. 

Although experiments were carried out using a mobile robot that 
moved on a flat floor (essentially 2-D motion), the algorithm is 
applicable to full 3-D motion. As was shown in Sections I1 and 111, 
motion parallax occurs when the fixation point falls in any cross- 
sectional plane perpendicular to the instantaneous direction of 
translation (i.e., a plane when q5 is constant). Therefore, the al- 
gorithm will converge to the proper direction of translation and will 
provide rotational information with respect to the visual sensor’s 
coordinate basis. Also, note that this method does not assume that 
the forward pointing axis of the moving entity coincides with the 
instantaneous direction of motion. Such an assumption can be made 
for vehicles with conventional forward wheel steering with no wheel 
slippage. In this case, a similar but somewhat simpler algorithm 
can be used when the camera’s rotational angle is known with re- 
spect to the forward direction of the vehicle [ 171. 

In our experimentation, the limiting factor for calculating the 
egomotion parameters in real time is the optical flow determina- 
tion. In order to determine the motion parallax around the line-of- 
sight, we tracked a small number of feature points (< 20) over sev- 
eral frames. This was performed on a Sun 4 workstation with a 
standard framegrabber and each flow determination step required 
IO to 20 s. The evaluation of the saccadic control equation requires 
only a single multiply and two additions, which can be considered 
computationally inexpensive when compared to evaluating the 
nonlinear equations of standard 3-D motion and structure deter- 
mination techniques used on optical flow. Furthermore, we have 
encountered a small percentage of error in our experiments. This 
error could be reduced by improving the angular resolution of our 
active camera. Also, the algorithm depends greatly on accurate 
tracking and accurate flow measurements, so errors in the tracking 
and flow algorithms need to be minimized. 
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An Invariant Pattern Recognition Machine Using a 
Modified ART Architecture 

Narayan Srinivasa and Musa Jouaneh 

Abstrucf-A novel invariant pattern recognition machine is proposed 
based on a modified ART architecture. Invariance is achieved by add- 
ing a new layer called F,, beyond the Fr layer in the ART architecture. 
The design of the weight connections between the nodes of the F2 layer 
and the cells of the F, layer are similar to the invariance net. Computer 
simulations show that the model is not only invariant to translations 
and rotations of 2-D binary images but also noise-tolerant to these 
transformed images. 

I .  INTRODUCTION 

The problem of invariant pattern recognition has interested re- 
searchers for a long time. Casasent et a / .  [ I ]  developed a model 
based on optical correlations to achieve invariance to position, ro- 
tation, and scaling of images. Cavanagh 121 proposed a model for 
size and position invariance in the visual cortex of the brain. Fu- 
kushima [3] and Fukushima and Miyake [4] developed a model 
based on several hierarchically organized processing stages to  
gradually free image processing from its spatial coordinates. Higher 
order threshold logic units were used for invariant image process- 
ing by Maxwell et ai .  [5]. Szu [6] used holographic coordinate 
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transformations to achieve 2-D spectra that is invariant to transla- 
tions, rotations and scaling. 

Recently, Widrow e t  a / .  171, [8] have used an invariance net as 
a preprocessor to a trainable classifier in order to  develop an in- 
variant pattern recognition machine. However, the invariance net 
is intolerant to noise and its computation time increases rapidly 
with an increase in image size. Khotanzad and Lu 191 and Yegnan- 
arayana and Ravichandran [ lo ]  have used a filter in conjunction 
with a multilayered perceptron to achieve invariance to transla- 
tions, rotations, and scaling. The invariant filter designed by them 
is based on determining the geometric moments of the input image. 
A previous generalization [ 1 I ]  of the ART1 architecture solves the 
invariance problem by using a Fourier-Mellin filter as  a prepro- 
cessor. However, this method requires very expensive hardware 
such as  scanned laser devices and reusable spatial light modulators. 
In our previous effort [12], we have used the invariance net [7], [8] 
as a preprocessor to  the ARTl  neural network to  achieve invariant 
pattern recognition. However, i t  is highly intolerant to noise. 

In this paper, a self-organizing neural network model is devel- 
oped for the purpose of invariant pattern recognition. Invariance is 
achieved by adding a new postprocessing layer to an ARTl  neural 
network called the F3 layer and is based on the invariance net [7], 
[8]. Unlike the method proposed in [12], the new network has noise 
tolerant properties and is computationally more efficient. While the 
processing time required by the proposed network increases with 
an increase in image size, it would be ideal to use i t  for low reso- 
lution images as it is purely based on software. 

This correspondence is divided into the following sections. Rea- 
sons for the choice of an ART architecture for invariant pattern 
recognition are delineated in Section 11. Section 111 discusses in 
brief the working principle of the ART1 neural network. In section 
IV the overall structure of the proposed model is described with 
emphasis on the structure and working principle of the new pro- 
cessing layer. Section V discusses the computer simulations and 
the results obtained. A possible approach to achieve size invariance 
through the proposed model is discussed in Section VI. Concluding 
remarks are given in Section VII. 

11. RATIONALE FOR THE CHOICE OF A N  ART ARCHITECTURE 

Neural networks can be classified into two types based on their 
learning methods: supervised and unsupervised neural nets. The 
backpropagation algorithm [ 131, the Functional-link net [ 141, 
Boltzmann machine [15], and multilayered perceptrons [ 161 are ex- 
amples of neural networks which require supervision from an ex- 
ternal agent for training. On the other hand, the adaptive resonance 
theory (ART) network [17]-[19], Kohonen’s network [20], Ander- 
son’s network [21], and the adaptive bidirectional associative 
memory (ABAM) network [22] are examples of neural nets that d o  
not require supervision for training. 

Unsupervised learning networks are attractive since they do not 
need to be trained by exemplars before coding can proceed. The 
Kohonen and Anderson networks work well with both binary and 
analog inputs but cannot learn new associations once they are 
trained. The ABAM network, while conceptually simpler than ART 
network, is subject to pattern orthogonality constraints and pattern 
storage problems. In contrast, the ART network does not have the 
above limits on its performance. Furthermore, processing of inputs 
in real time is possible using “fast learning conditions” [17], and 
because every time a familiar pattern is presented, i t  directly acti- 
vates an appropriate stored pattern. In addition, the ART network 
possesses additional properties that are desirable in a pattem clas- 
sifier for use in engineering applications [23], [24]. These prop- 
erties include: 

I )  Self-Scaling Property: This refers to its ability to treat mis- 
matches in input patterns with few features as  essential while sup- 
pressing the same mismatches as  noise in input patterns with many 
features [17]. For image processing, this implies that depending on 
the resolution of the image presented, the network will be selective 
to certain features of it. 

2)  Self-Stabilizing Property: This refers to its ability to defend 
its fully committed memory capacity from being washed away by 
an incessant flux of new input patterns and to access a node in its 
memory without a search if a familiar input were to be presented. 

3)  Plasficifv: This refers to its ability to recognize and store 
new input patterns in a nonstationary environment limited only by 
the total memory available. A proof of these properties is given in 

Properties 2) and 3) help not only in preserving previously 
learned images but also in continuing to learn new images without 
erasing the memories of prior images. All the above properties make 
the ART network an ideal for use as a pattern recognition machine 
for image processing. However, the network is not invariant to 
translations, rotations, and scaling and needs to be modified in or- 
der to achieve that. 

1251. 

111. WORKING PRINCIPLE OF T H E  ART1 NEURAL NETWORK 

The architecture of the ARTl neural network is shown in Fig. 
1. The network has two processing layers F ,  and F,. The algorithm 
for the net is as follows: 

Step I )  Present the binary input pattem as  an N dimensional 
input vector I with each component I ,  ( i  = I ,  2 ,  . . . , N )  having 
a value 0 or 1. 

Step 2 )  Bottom-up processing to obtain a weighted sum y, for 
each node j in the F ,  layer: 

Y 

y, = c b,,l, (1) 
j =  I 

where b,[ IS the bottom-up long term memory ( L T M )  trace con- 
necting the ith component of I at F,  to thej th  node at F,. 

Step 3) Choose the node J with the largest value of y, in the F, 
layer. 

Step 4)  Verify if I belongs to the Jth node of the F, layer as 
follows. I belongs to the Jth node if 

N 

tJ , I t  
, = I  

.v ’ p 

c 4 
I =  I 

where p is the vigilance parameter and t,, is the top-down LTM 
trace. If I belongs to the Jth node then go to step 5 ) ;  otherwise, go 
to step 6). 

Step 5 )  Update b,, and t,, under fast learning conditions as  fol- 
lows: 

and 
r ;y  = ,Old I  

JI  I 

It should be noted that the LTM traces are initialized as 

(4) 

Step 6) Since I does not belong to the node that was most like 
i t .  send a reset wave to F2 via the orienting unit to  deactivate that 
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Fig. 1 .  The ART1 neural network architecture 

node and go back to step 2) to search for another node in the F2 
layer. 

IV. STRUCTURE A N D  WORKING PRINCIPLE OF T H ~  N E U  
NETWORK 

The new network contains three processing layers: the F ,  and F2 
layers of the ART1 neural net and a new layer called F?. This layer 
is based on the invariance net [7], [8] and acts as a vehicle to gen- 
erate invariance in the F2 layer. T o  illustrate the working principle 
of the new network, consider a 4 x 4 binary image as an input to 
the F ,  layer of the ART1 neural net. The algorithm for the new net 
is as  follows: 

Srep I) The 4 X 4 binary image B is converted to a 16-dimen- 
sional input vector I and is input to the F ,  layer of the ART1 neural 
net. 

I, = Bknl i = I to 16 ( 5 )  

where Bkm are the elements of the image E and 

The operator n [ x ]  converts x into an integer. This input is then 
coded into a node J in the F2 layer by following steps 1) through 
6) of the ART1 net algorithm. 

Step 2) Slab #I  of the F3 layer is then activated. This slab con- 
tains 16 cells corresponding to the number of features in the vector 
I. Each cell further contains 16 units connected to the Jth node in 
the F2 layer. Let the weight matrix for the top left cell be W , .  Then, 
the elements of W ,  are given by 

y, = f,, i = 1 to 16 ( 6 )  

where k and m are defined as  in ( 5 ) .  

from W ,  as  follows: 
The weight matrix for all the cells of slab #1 can be constructed 

W ,  T,,(W,) T,dWI) Tr3(WI) 

Tdl (W,)  T,, Tdl (Wl ) Tr, Tdl( Wl 1 Tr 3 Til ( Wl 

Td2(WI) TrI Td2(WI) Tr2Td2(Wl) Tr3Td2( Wl ) 

Td 3( Wl) Tr 3 Td 3( wl ) Tr I Td3( W i  Tr2  Td 3( Wl 

where the operator Td, represents translation of each row of the 
weight matrix W ,  by i pixels down and T,, represents translation of 
each column of the weight matrix W ,  by i pixels to the right. Thus, 
slab # 1  incorporates invariance to top-down and left-right transla- 
tions within the binary image. 

Step 3) Additional slabs are created to achieve invariance to dif- 
ferent rotations. For illustrative purposes, a slab structure that is 
invariant to 90" rotations is considered. Slab # I  always corre- 
sponds to a rotation of 0". So, the slab structure will contain an 
additional three slabs (one each for 90". 180". and 270" rotations). 

For slab #2, the weight matrix for the top left cell will be W2 = 
R9,,-(W,) where Rgo0 is an operator that rotates the elements of W ,  
by 90". The weight matrices for all the cells of slab #2 is obtained 
by replacing W ,  in (7) by W,. Similarly, the weight matrices for 
slabs #3 and #4 are obtained by replacing W ,  by W3 and W,, re- 
spectively, where W ,  = R18,,c(W,) and W, = R 2 7 0 0 ( W I ) .  The entire 
slab structure required to achieve invariance to  all translations and 
90" rotations is shown in Fig. 2. 

Step 4)  A cluster of 64 nodes are formed in place of node J in 
the F,  layer. These new nodes have a one to one correspondence 
to cells of the four slabs formed in step 3). The top-down LTM 
trace for each new node is obtained from the weight matrix of its 
corresponding cell. For example. to obtain the top-down LTM trace 
of a new node L at Fz corresponding to the top-left cell of slab #2 
we have 

t;;" = M%,,, (8) 

where w ~ , , ,  are the elements of W ,  and k and m are defined as in ( 5 ) .  
The bottom-up LTM trace for node L is derived as 

(9) 

where the elements I,' are obtained as  follows: 

I :  = R,,-(B) = B;,,, i = 1 to 16 (10) 

M here B;,,, are elements of the matrix R,,s(B) and k and m are de- 
fined as  in ( 5 ) .  The bottom-up and top-down LTM traces for all the 
new nodes at Fz can be derived using the above procedure. 

Step 5 )  All the elements of the weight matrices in the F3 layer 
are reset to zero, and the program goes back to step 1) to process 
the next input. 

As mentioned before, the concept of manufacturing invariance 
at F? is the same as the invariance net developed by Widrow e t  al .  
[ 7 ] ,  [SI. However, there are some major differences between the 
invariance net and the modified ART network presented in this pa- 
per. First, the ADALINES [7], 181 (analogous to the cells of each 
slab in the new network) in each slab of the invariance net produce 
a single bit output from each slab and ultimately map the binary 
image to  a different image. The slabs of the F3 layer produce a 
cluster of nodes in the Fz layer that act as feature detectors them- 
selves. Second, the weight matrix of the top-left ADALINE of each 
slab is chosen randomly in the invariance net and hence produces 
invariant maps that are totally intolerant to noise. On the contrary, 
the weight matrix for the top left cell of each slab in the new net- 
work is based on the LTM traces that coded the first appearance of 
an input at the Fz layer. This helps produce highly noise-tolerant 
recognition codes. And third, the invariance net is computationally 
more intensive than the proposed F? layer. T o  illustrate this, con- 
sider an input image with N X N pixels. Also, assume that the user 
requires the network to be insensitive to Mrotations. Then the total 
number of weight connections required by an invariance net is M N 4 .  
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Fig. 2. Pattern of weight connections between the Fz node that codes the 
binary input and the cells of the F3 layer in order to achieve invariance to 
all translations and 90” rotations. 

1V 

Coded in Node 3 In contrast, the total number of weight connections required by the 
new network is M N 2 .  While this number is large, it would still be 
suitable for low resolution images. 

Coded in Node 4 Coded in Node 2 Coded in Node 1 

v .  COMPUTER SIMULATIONS A N D  RESULTS 

The modified ART architecture has been implemented in C on a 
VAX 11/750 station. For the purpose of simulating the modified 
ART architecture, the F3 layer was structured to be invariant to all 
translations and 90” rotations. An array of 8 x 8 pixels was used 
as the image size for the binary input with the shaded squares hav- 
ing a 1 value and the nonshaded ones having a 0 value. This implies 
that the E, layer is made up of four slabs with each slab consisting 
of 64 cells. An input set consisting of four images “P ,”  “ M , ”  
“K,” and “U” was presented to the modified ART architecture. 
The four input patterns were coded into four different categories as 
shown in simulation I of Fig. 3 for a vigilance greater than 0.5. 
Subsequently, a set of translated and rotated versions of these four 
images was presented. These images were again coded into the 
same four categories as shown in simulation I1 of Fig. 3. This in- 
dicates that the modified ART architecture is invariant to 90” ro- 
tations and translations. Also, the new network retains its self-sta- 
b i k i n g  property by directly accessing the previously established 
categories of these four images. 

In order to test the noise handling ability of the modified ART 
architecture, noise ranging from 8 to 30 percent (percentage mea- 
sured as the ratio of noisy pixels to the total pixels contained in the 
uncorrupted image) was introduced to rotated and translated ver- 
sions of the four images. It was found that the modified ART ar- 
chitecture was able to directly access previously established codes 
for each image without any errors. These results are summarized 
in simulations 111, IV, and V of Fig. 3 and indicate that the mod- 
ified ART architecture is noise-tolerant. 

In order to test the modified ART architecture for its plastic 
properties, an unfamiliar set of inputs “N” and “0” were pre- 
sented. These inputs were coded into two new categories. A sub- 
sequent presentation of rotated and translated versions of “ N ’  and 
“0” resulted in direct access to their newly formed categories. 
These simulations indicate that the modified ART architecture is 
truly plastic to unfamiliar inputs. It should be noted that the order 

w 
Coded in Node 2 

ttttttm 
Coded in Node 1 

t k l id rd  
Coded in Node 3 Coded in Node 4 

Fig. 3. Outputs of the modified ART architecture for an 8 x 8 images of 
” P , ”  “ M , ”  “ K , ”  and “U” during simulations I through V.  The noise 
level ranged from 8 to 30 percent. 

of presenting these images does not affect the coding process. For 
example, there can be a situation in which the first instance of an 
image encountered by the modified ART architecture is a rotated 
and translated version of its upright self. The new network has been 
tested for these cases and has behaved perfectly with no mistakes. 

For the purpose of testing the self-scaling property of the mod- 
ified ART architecture, the simulations I through V conducted for 
an 8 x 8 image, were repeated for a 16 x 16 image. It was found 
that the modified ART architecture was able to correctly recognize 
all the twenty images (this includes images from all five simula- 
tions) independently as shown in Fig. 4 .  Also, the amount of noise 
tolerated improved from 30 percent for an 8 X 8 image to 45 per- 
cent for a 16 x 16 image. These results indicate that the modified 
ART architecture is more tolerant to mismatches in an image when 
the number of features that describe them increases. Thus, it can 
be seen that the modified ART architecture retains the self-scaling 
property of an ART architecture. 

VI. INVARIANCE TO SIZE THROUGH THE MODIFIED ART 
ARCHITECTURE 

In order to achieve invariance to size using the new network we 
propose a multislab structure as shown in Fig. 5. The inner most 
slab is similar to the slab structure discussed in the previous sec- 
tions. All the other slabs within the multislab structure are invariant 
to a unique size of the input and are connected to the inner most 
slab independently. The total number of slabs within the multislab 
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Fig. 4. Outputs of the modified ART architecture for a 16 x 16 images of 
“P,” “ M , ”  “ K , ”  and “ U ”  during simulations 1 through V.  The noise 
level ranged from 17 to 45 percent. 

Fig. 5 .  A multislab structure to achieve size invariance through the niod- 
ified ART architecture. 

structure is equal to the sum of the total number of unique sizes 
(each slab is sensitive to a unique size) and the inner most slab. 

These additional slabs are made invariant to different sizes by 
the nature of their weight connections to the nodes of the F? layer. 
The design of these connections is again based on the invariance 
net. The amplitude of weight connections between the nodes of F2 
and each slab are scaled in inverse proportion to the square of the 
linear dimension of the input image size. These additional slabs 
produce a set of nodes at F? with each node being sensitive to a 
unique size and position of the input image. The total number of 
nodes within a cluster at F ,  will now equal the total number of cells 
within the inner most slab at F3 multiplied by the product of the 
number of the orientations and sizes that the user desires. 

V11. CONCLUSION 

An invariant pattem recognition machine is developed based on 
an ART architecture. A multislab layer called F3 was added to an 
ART1 neural net to act as  a vehicle to generate invariance in the 
F2 layer. Each slab is made invariant to all translations but a single 
rotation only. The weight connections between the nodes of the F2 
layer and the cells within the slabs of the F3 layer was based on a 
modified form of the invariance net. The new network was tested 
by feeding rotated and translated versions of 2-D binary images to 
an ART1 neural network. Results show that the new network is not 
only invariant to rotations and translations, but is also highly noise- 
tolerant and achieves invariant properties without altering the es- 
sential properties of an ART architecture. While the new network 
is computationally more efficient than the invariance net, there is 
an increase in processing time with an increase in resolution of the 
image. However, the proposed network is ideal to use for low- 
resolution images as it is purely based on software, and computers 
with powerful computational capabilities are rapidly becoming 
more affordable. 
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Classification-Based Segmentation of ZIP Codes 

Yousuf Saifullah and Michael T .  Manry 

Abstract-In this paper a system for the segmentation of uncon- 
strained handwritten ZIP codes is presented. A binarization algorithm 
is described that utilizes the bimodal nature of the input 256 gray level 
histogram. ZIP code images are scaled to a standard size for further 
processing. Objects that are not comparable to the size of numerals 
are classified as noise and removed. An algorithm that segments bro- 
ken or touching characters is presented. Several trial segmentations of 
each ZIP code are produced. A character classifier is used to determine 
which trial segmentation is most likely to be correct. 

I .  INTRODUCTION 

Many handwritten character recognition systems [ 11-[  171 are 
presently in service or under development. Applications include 
mail sorting, automatic reading of forms such as tax forms, robotic 
vision, microfilm reading, and signature verification. The great va- 
riety of applications shows the critical importance of this subject. 
Rising labor costs have greatly increased the demand for automatic 
handling of these types of data. 
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In the real world, we encounter two types of handwritten char- 
acters: constrained and unconstrained. Constrained characters are 
written within specific boundaries, while unconstrained characters 
are not. The technology for reading constrained characters is highly 
developed, but that for reading unconstrained characters [3]-[ IO] 
is still under development because of its inherent difficulties. 

The U.S.  Postal Service has been interested in automatic mail 
sorting [8]-[13], [ 181-[21] for many years. The complete operation 
of mail sorting can be broken down into several components; 1) 
location of the ZIP code on the package [ 18]-[21], 2) segmentation 
of a ZIP code image into constituent digits [4], [14], and 3) rec- 
ognition of the ZIP code digits [3]-[12]. In order to facilitate re- 
search into segmentation of a ZIP code image into its constituent 
digits, the Postal Service Office of Advanced Technology has made 
available a database of ZIP code images, entitled “United States 
Postal Service Office of Advanced Technology Handwritten ZIP 
Code Database (1987).” These ZIP code images consist of arrays 
of varying size that are stored in 1 byteipixel (256 gray level) for- 
mat. Both five digit and nine digit ZIP codes are included. Each 
image has background and object (character) regions, plus noise or 
interference. The noise can be broken down into 1) random noise, 
2) touching or overlapping parts of other numerals and characters. 
and 3) bars generated when the customer underlines the ZIP code. 

In this correspondence we present a system of algorithms for the 
segmentation of a ZIP code image into its constituent digits. In 
Section 11, the binarization and scaling algorithms are discussed. 
Noise removal algorithms are described in Section 111. In Section 
IV, a method is given for distinguishing five digit ZIP codes from 
nine digit ZIP codes. A method for generating several trial ZIP 
code segmentations is described in Section V .  A classification-based 
approach, for determining which trial segmentation is best, is given 
in Section VI. 

11. BINARIZATION A N D  SCALING 

Since we need to consider only two kinds of information in our 
ZIP code for the recognition task, “background” and “object,” a 
binarization of the gray level image is the logical first step in pro- 
cessing. Binarization of images can be achieved using histogram 
approaches. Generally. in this approach, one searches for a thresh- 
old that separates background pixels from object pixels. ZIP code 
images often have bimodal histograms. Since background pixels 
are more likely than object pixels, background pixels produce the 
dominant mode. A natural choice for the thresholding point should 
be the lowest point in the valley between two modes, as  seen in 
Fig. 1. Unfortunately the object mode is not always distinguishable 
from the valley. 

There are many binarization methods, but they have problems. 
The iterative threshold selection algorithm [22], [23], which as- 
sumes that the histogram is bimodal and that background and object 
pixels are equally likely, is a poor choice because background pix- 
els are much more likely than object pixels in ZIP code images. 
The discriminant analysis method [24] works well when a distinct 
contrast between the two classes exists, otherwise the optimization 
results tend to mix object and background pixels to a great extent. 
We want to generalize our algorithms so that they can work on low 
contrast images also, so discriminant analysis is not a good choice. 
Entropy-based techniques [ 2 5 ] ,  [26] are not suitable because they 
tend to blur objects, resulting in a loss of loops and sharp contours. 
We have attacked these problems by using a cumulative histogram 
method. 
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